Известно, что практически во всех типах сточных вод содержатся патогенные микроорганизмы - возбудители таких заболеваний как холера, дизентерия, брюшной тиф, паратиф А и В, сальмонеллезы, вирусные гепатиты А и Е, полиомиелиты 1-3 типов, энтеровирусные и аденовирусные заболевания, амебиоз, лямблиоз, лептоспироз, бруцеллез, туберкулез, туляремия, гельминтозы, кампилбактериозы.
Болезни, вызываемые этими микроорганизмами, различны и в неблагоприятных случаях могут приводить к серьезным последствиям для человека. По данным ВОЗ, уже в 70-х годах структура заболеваемости двух третей населения земного шара свидетельствовала о явном, преобладании инфекционных заболеваний, обусловленных загрязнением водоемов. Действительно, с точки зрения здоровья людей обеззараживание самая важная стадия обработки сточных вод.
Так, например, согласно немецким стандартам по степени опасности воды делятся на 5 классов:
Современные станции водоочистки сточных вод в значительной мере освобождают воду не только от механических и химических загрязнений, но и от патогенной микрофлоры. Однако, даже самые высокоэффективные водоочистные сооружения не обеспечивают дезинфекции стоков без специальных устройств обеззараживания. Вместе с тем, в ряде случаев из-за отсутствия, малой мощности и неэффективной работы водоочистных сооружений происходит сброс в водные объекты неочищенных или недостаточно очищенных сточных вод. Зачастую на водоочистных сооружениях системы обеззараживания отсутствуют вовсе.
В связи с высокой опасностью сточных вод, технологическая схема водоочистных сооружений обязанна включать обеззараживающую стадию.
Методы, применяемые для обеззараживания сточных вод (СВ) условно можно разделить на следующие группы:
Хлорирование – самый экономичный метод обеззараживания.
Однако, как показывают данные большинства исследователей для инактивации вирусов в сточной воде, требуются значительно более высокие дозы озона чем для тех же микроорганизмов в чистой воде. Обеззараживание сточных вод озоном целесообразно применять после ее очистки на фильтрах или после физико-химической очистки, обеспечивающей снижение содержания взвешенных веществ не менее чем, до 3 - 5мг/дм3 и БПКполн до 10 мг/дм3.
Этот реагент взаимодействует с органическими и неорганическими веществами, что препятствует его дезинфицирующему действию, в результате оно оказывается намного ниже, чем у хлора и озона.
В настоящее время возрос интерес и к пероксиду водорода, как обеззараживающему агенту, обеспечивающему осуществление экологически чистых процессов без образования токсичных продуктов как при обработке сточной воды, так и питьевой воды. Однако установлено, что Н2O2 оказывает инактивирующее действие на бактерии только в довольно высоких концентрациях. Такие дозы приводят как к высоким затратам на дезинфекцию, так и к сбросу сточных вод с повышенным содержанием пероксида водорода, для которого установлены жесткие предельно допустимые концентpации: 0,1 и 0,01 мг/дм3 в водоемах культурно-бытового и рыбохозяйственного назначения соответственно.
Известкование применяется обычно в сочетании с удалением аммонийного азота из сточных вод отдувкой. Необходимый гигиенический эффект при обработке сточных вод достигается при использовании больших доз реагентов, что сопровождается образованием огромного количества осадка. Этот факт, также как и сравнительно медленное действие на микрофлору, существенно ограничивает применение известкования и делает его неприемлемым для использования на средних и крупных станциях аэрации.
Создание мощных источников излучения, новые конструктивные решения УФ - установок, снабженных чувствительными датчиками, позволяющими измерять и контролировать интенсивность излучения в обрабатываемой воде и обеспечивать автоматическое регулирование интенсивности в зависимости от качества обрабатываемой воды, сделали этот метод конкурентоспособным, сравнимым по стоимости с хлорированием. Действующие в России нормативы по дозе ультрафиолетового излучения в 16-20 мДж/см2 для питьевой воды и 28-30 мДж/см2 для хозяйственно - бытовых и промышленных стоков не обеспечивают достаточной инактивации патогенной микрофлоры.
Более того, необходимо учитывать повышение устойчивости микрофлоры к воздействию хлора, озона и ультрафиолета. Это естественный процесс эволюции. При использовании УФ-обеззараживания необходимо учитывать все факторы, влияющие на процесс дезинфекции. В настоящее время накоплен обширный материал по воздействию УФ-излучения на различные виды микроорганизмов, которые по устойчивости к ультрафиолету располагаются в ряд: вегетативные бактерии вирусы бактериальные споры цисты простейших. При этом установлено, что УФ-излучение действует на вирусы намного эффективнее, чем хлор. Эффект обеззараживания при УФ - дезинфекции основан на воздействии ультрафиолетовых лучей с длиной волны 200 - 300 нм на белковые коллоиды и ферменты протоплазмы микробных клеток, он обусловлен фотохимическим реакциями, в результате которых происходят необратимые повреждения ДНК и других структур клетки. Бактерицидный эффект зависит от прямого воздействия ультрафиолетовых лучей на каждую бактерию. Многочисленные исследования показали отсутствие вредных эффектов после облучения воды даже при дозах, намного превышающих практически необходимые.
Обеззараживаемая ультрафиолетом вода должна иметь достаточную прозрачность, поскольку в загрязненных водах интенсивность проникания УФ - лучей быстро затухает.
Такие физические методы обеззараживания сточных вод, как обработка воды ускоренными электрическими зарядами, электрическими разрядами малой мощности, переменным электрическим током, магнитная обработка, термообработка, обработка ультразвуком, микрофильтрование, радиационное обеззараживание используются достаточно редко из-за высокой энергоемкости или сложности аппаратуры.